
NOVEL NMR-BASED METHOD FOR PREDICTION OF GLOMERULAR FILTRATION RATE PERFORMS WELL IN CHILDREN

Jochen Ehrich¹, Laurence Dubourg², Sverker Hansson³, Jens Drube¹, Lars Pape¹, Katharina Schäffler⁴, Tobias Steinle⁴, Jana Fruth⁴, Sebastian Höckner⁴, Eric Schiffer⁴

¹Children's Hospital, Hannover Medical School, Hannover, Germany, ²Service d'Explorations Fonctionnelles Rénales et Métaboliques, Hôpital Edouard Herriot, Lyon, France, ³Department of Pediatrics, Sahlgrenska University Hospital, Gothenburg, Sweden, ⁴numares AG, Regensburg, Germany

BACKGROUND

Creatinine based estimation of glomerular filtration rate (eGFR_{creat}) in children requires different equations than in adults. Different pediatric equations have been established; however, these equations still show suboptimal performances in the upper and lower GFR range. Recently, a novel serum-based method for accurate prediction of GFR using a nuclear magnetic resonance (GFR_{NMR}) spectroscopy-based biomarker constellation (creatinine, myo-inositol, valine, and dimethyl sulfone) was developed. This method outperformed the conventional eGFR equations when validated in three separate cohorts of predominantly adult patients. In this study, we evaluate the performance of GFR_{NMR} in a pediatric cohort.

METHODS

The value of the GFR_{NMR} in children was investigated by testing its performance in a cohort of 77 children (40 girls, 37 boys) aged between 3 and 18 years. The NMR-based method was compared to eGFR_{creat} by the updated obtained "Bedside" Schwartz formula.

	cohort
n	77
Age (range)	2.9 – 17.9
Sex (girls / boys)	40 / 37
CKD stage (1 / 2 / 3 / 4 / 5)	37 / 16 / 19 / 4 / 1
mGFR	
⁵¹ Cr-EDTA	44
Iohexol	33

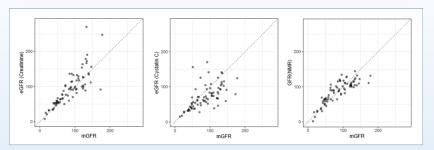
In addition, the cystatin C-based equation derived from the CKiD cohort was used for calculating cystatin C-based eGFR (eGFRcys). Pearson correlation coefficient (r) with 95 % confidence interval, root mean square error (RMSE), and the percentage of eGFR values within 30% of measured GFR (P30) were calculated to assess the accuracy of the methods.

CONTACT DETAILS

maulik.shah@numares.com

Follow numares: f @numares AG @Agnumares

in @numares AG


RESULTS

In a cohort comprising pediatric patients with various degrees of kidney impairment covering the whole GFR range, the NMR-based method showed a higher correlation with mGFR compared to eGFR_{creat} (r=0.85 vs. r=0.80).

Moreover, the RMSE was reduced from 28.4 for $eGFR_{creat}$ and 34.8 for $eGFR_{cys}$ to 20.0 for GFR_{NMR}. The NMR biomarker constellation also showed a higher accuracy in mGFR prediction with a P30 of 79.0% compared to 67.0% for eGFR_{cvs} and a similar P30 of 79.0% for eGFR_{creat}.

We tested in multivariate variance analysis whether the NMR approach allows accurate estimation of GFR independent of underlying renal etiology. We categorized observed etiologies as either glomerular (n=19), tubolo-interstitial (n=30) or mixed (n=28) renal dysfunction.

While GFR_{NMR} was a highly significant predictor of mGFR, renal dysfunction did not impact the accuracy of GFR_{NMR}.

	eGFR _{creat}			eGFR _{cys}			GFR _{NMR}		
	Value	CI 2.5%	CI 97.5%	Value	CI 2.5%	CI 97.5%	Value	CI 2.5%	CI 97.5%
n	77			76			77		
RMSE	28.4			34.8			20.0		
Pearson correlation	0.82	0.73	0.88	0.61	0.45	0.74	0.85	0.78	0.90
P30	0.79			0.67			0.79		

$mGFR = GFR_{NMR} + dysfunction$								
	Df	Sum Sq	Mean Sq	F value	p value			
GFR _{NMR}	1	81312	81312	197	<0.0001			
dysfunction	2	461	230	0.56	0.57			
residuals	73 30135		413					

Note: Df indicates degrees of freedom, Sum Sq indicates sum of squares, Mean Sq indicates Mean Squares.

CONCLUSIONS

Our results demonstrate that an NMR-based biomarker constellation accurately predicts GFR not only in adults but also in pediatric patients. In fact, this novel method outperformed the established bedside Schwartz equation and the cystatin C-based equation derived from the CKiD cohort.

Thus, GFR_{NMR} allows reliable and continuous monitoring of kidney function at the transition from pediatric to adult renal care without the need to switch the estimation equation.