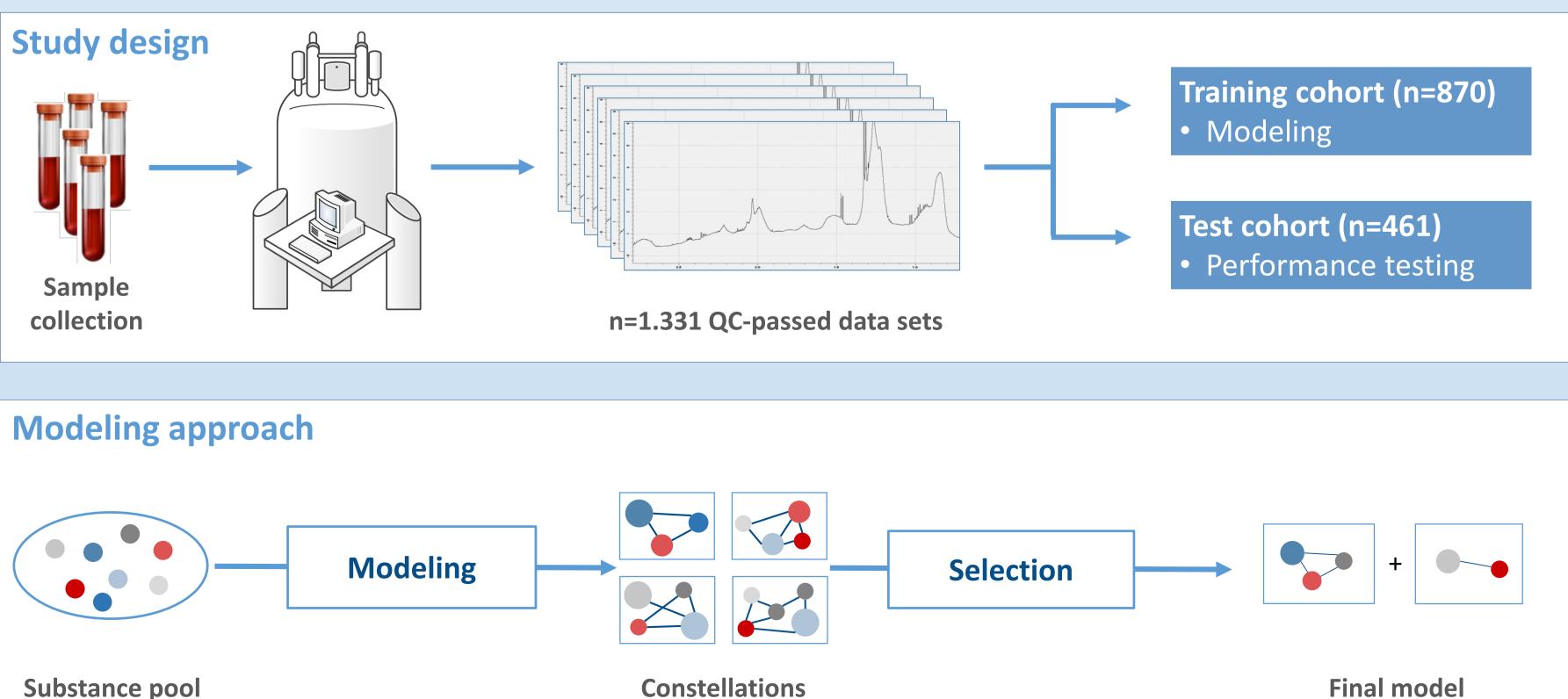
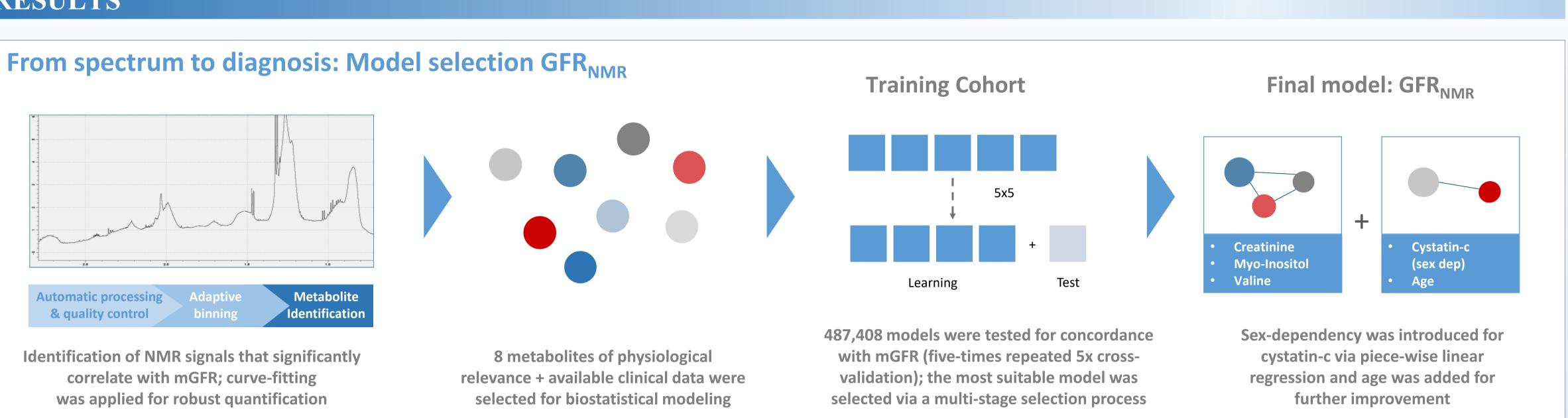
A Multi-parametric, Nuclear Magnetic Spectroscopy based, accurate assessment of renal filtration by combining creatinine, myo-inositol, valine, and cystatin-c with age and gender


Jeffrey Meeusen¹, Frank Stämmler², John Lieske³, Marcello Grassi², Maulik Shah⁴, and Eric Schiffer² ¹Mayo Clinic Department of Laboratory Medicine and Pathology (Rochester, MN), ²Department of Research and Development, numares AG (Regensburg, Germany), ³Mayo Clinic Division of Nephrology and Hypertension (Rochester, MN), ⁴Clinical Research, numares (Boston, MA)

BACKGROUND

Multiple-biomarker panels are increasingly utilized to overcome limitations of classical single biomarker assays. Glomerular filtration rate (GFR) estimation by single biomarker, creatinine or cystatin-c currently suffers from accuracy across the GFR range. We propose nuclear magnetic resonance spectroscopy (NMR) as a diagnostic platform capable of numerous metabolite measurement as a method to improve the current glomerular filtration rate (GFR) estimation method.

GFR_{NMR} / METHODS


We combined NMR metabolite measurement with artificial intelligence to identify multiple biomarkers associated with glomerular filtration rate (GFR) and chronic kidney disease associated metabolic dysfunction. Using NMR, we identified a pool of eight metabolites associated with GFR. Together with cystatin-c, age and sex, these metabolites were subjected to exhaustive machine-learning using piece-wise linear regression for accurate GFR prediction in (n=870) training samples using radiotracer measured GFR (mGFR) as a reference. The final constellation was validated in (n=461) independent samples in an international multi-center sample set.

Substance pool

Constellations

RESULTS

Performance of the final model was assessed in the independent test cohort (n=461)

Overall performance of GFR_{NMR} was superior to current eGFR formulas

Formula	Overall test cohort						
	P30	P20	P15				
GFR _{NMR}	88.72	72.23	57.27				
CKD-EPI 2012	84.16*	65.08*	55.1				
CKD-EPI 2009	74.62**	58.13**	47.72*				
CKD-EPI Cyst	71.58**	50.98**	41.00**				
EKFC	78.74**	60.09**	47.94*				
Significance level adj. p-value (McNemar test), comparison GFR _{NMR} : * < 0.003; **< 0.0001							

CONCLUSIONS

CONTACT DETAILS

maulik.shah@numares.com

GFR_{NMR} showed constant performance over the full range of age

Formula	Age < 40 years		Age 40-65 years		Age > 65 years	
	P30	RMSE	P30	RMSE	P30	RMSE
GFR _{NMR}	90.77	19.03	87.65	14.03	89.54	11.26
CKD-EPI 2012	89.23	18.02	86.01	15.10	79.08	13.14
CKD-EPI 2009	73.85	22.59	73.25	19.26	77.12	14.15
CKD-EPI Cyst	86.15	20.91	71.60	18.82	65.36	15.80
EKFC	83.08	21.47	75.72	18.37	81.70	13.51

Radiotracer mGFR is the gold standard but limited by availability. For routine clinical use, creatinine and cystatin-c based formulas are common practice but have accuracy limitations. A metabolomics-based GFR_{NMR} was superior to both the current CKD-EPI formulas

and the newly developed EKFC formula for GFR estimation.

Follow numares: **Follow** numares AG

in @numares AG numares NMR diagnostics